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INTRODUCTION

Edge-flames play an important role in a number of microgravity investigations, and in tile general

study of flames. Examples include the candle-flame experiments carried out. on board both tile

Space-Shuttle and the Mir Space Station, e.g.[1]; the flame-spread-over-liquid _rk carried out by

H.Ross and W.Sirignano, amongst others, e.g. [2,3]; and lifted turbulent diffusion flames. Ill all

of these configurations a local tw o-dimensionalflame structure can be identified which looks like

a flame-sheet with an edge, and these structures exhibit dynamical behavior which characterizes

them and distinguishes them from ad ho e2D flame structures.

Edge-flames can exist ill both a non-premixed context (edges of diffusion flames) and in a

premixed context (edges of deflagrations), but the w orkreported here deals with the edges of

diffusion flames. It is particularly relevant, we believe, to oscillations that ha vebeen seen in both

the candle-flame context, and the flame-spread-over-liquid co,ext. These oscillations are periodic

edge-oscillations (in an appropriate reference frame), sans oscillation of the trailing diffusion flame.

References [4,5] examine a simple model of an anchored edge-flame, and construct solutions

using DNS. It is shown that if tile Lewis number of the flmI is sufficiently large (the Lewis number

of the oxidizer is taken to be 1), and the DamkShler number is sufficiently small, oscillating-edge

solutions can be found. Oscillations are encouraged by an on-edge conv ecti_ flow and the insertion

of a cold probe, discouraged by an off-edge convectiv eflo w.

In the present work, the nature of these oscillations is examined in more depth, using a variet y

of numerical strategies.
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Figure 1: (i) Tile model configuration (the low emnd upper boundarys are at y = 0, y = 1); (ii)

Response diagram for the steady 2D solutions.
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Figure 2: (i) Unstable solution for D = 1.7 x 107; (ii)V ariationmf the period of oscillation with
DhmkShier numtier. " ...............
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THE CONFIGURATION AND STEADY SOLUTIONS.

The model configurationl first in tr0duced in [4], is sketched in Figure l(i). The discontinuity in

data at the fuel-supply boundary introduces a weak anchor for an edge-flame nominally located in
the region x > 0. The field equations are

( Le@v 1 y)OOt(T, X, Y) = V 2 T, X, _ + (q, -ax, -ay) DXYe -°/T, (1)

and these describe a 1D frozen solution at x -+ -oc, a 1D diffusion flame solution at x --_ +oc.

The latter is characterized by the familiar S-shaped response of diffusion flames, with an upper

strong-burning branch when D > Drain. When

1 1

c_x --- -_, a)-= _, Lex = 1,

(values that we shall use throughout), we find

Solutions of the 2D problein defined by (1)

and Runge-Kutta time in tegration. F orsome

calculate these using the unsteady code we fix

2
Ley =2, q=l, 0=6, Tw=--

13

Drain = 0.79 x 107.

are constructed using 4th-order spatial differencing
values of D, stationary solutions are unstable. T o

the integral

_Xrnax fO ]
I_ = I dx dy DXYe -°/T. (2)

J Xmi n

Then at eac hfractional time step in the R-K integration in which X, }, and T are adjusted, D

is also adjusted to fix In. The solutions Constructed in this way ae c haracterized by the response

of Figure l(ii) where the total heat output (ordinate) is I_z, since here q = 1. This revealsa

detachment DamkShler number, Ddet = 1.44 x 107, below which 2D solutions do not exist.

Unsteady DNS at fxed D identifies stable steady solutions at late time if D > Dns, and

oscillating solutions for some range of D in D < D,_. Figure 2(i) shows temperature variations

at a fixed point when D = 1.7 x 107, a value less than Dns; indeed Dns lies somewhere between
1.9273 x 107 and 1.9580 x 107.

At this point we have identified three significant DamkShler numbers: the 1D quenching value
Drnin = 0.79 x 107; the 2D stationary-edge detachment value Ddet = 1.44 x 107; and the 2D

neutral stability value Dns _ 1.94 x 107. A fourth significant nunber is the minimum value for
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whichoscillating(non-detached,non-quenched)solutionscanbeobtained.This is approximately
D = 1.583 x 107, a value greater than Ddet. As D "% 1.583 x 107, the amplitude of the oscillations

increases, so that the maximum distance between the edge and the anchor point at (0, 0) increases.

Apparently botlLhe amplitude and tile period of the oscillations approach infinity, albeit slowly.

Thus Figure 2(ii) shows the period for various D. The minimum D here is 1.5835 x 107 and xmax

for the computational domain is 8, to prevent failure due to disappearance of the flame from the

domain.

LINEAR STABILITY

We have seen how steady 2D edge-flame solutions can be constructed for all D greater than a

critical detachment value, whether they are stable or unstable. These solutions can be used as the

foundation of a linear stability analysis.

If w einclude z derivativ esin the description (1) and linearize about the steady-state solution

by writing

T = Ts + T', etc., (3)

the perturbation variables satisfy the linear system

o o2+ ')
(4)

where we have assumed that the perturbations are proportional to e ikz, corresponding to corruga-

tions in the z direction of specified wave-n ufiaer. The boundary conditions are

T'=X'=Y'=O at y=0,1; _x()'-_0as Ixl_oc. (5)

For the parameter values examined here, the relevant 1D solution is stable for all D greater than

the 1D quenching value.

A common strategy for discussing the solutions to systems suc has (4), (5) is to make the

replacement _ --4 ,_ and solv ethe eigenvalue problem by finite differencing and matrix methods.
But an alternative is to use the unsteady solv erthat w eha veused for all of the other numerical

components of tile problem. Time integration of (4), (5) with arbitrarily chosen initial conditions

leads to an ev er-graving solution if D lies to the left of Dns. This growth can be monitored for

one of the field variables, at a single point. Provided there is only a single unstable mode, both the

growth rateT/e()_) and tile frequency 5[rn()Q can be deduced from this output. At the same time,

a late-time snapshot of the field variables identifies the eigenfimction, e.g. Figure 3(i). The dipole

nature of the reaction-rate eigenfunction, Fignlre 3(i), is simply a reflection of the oscillating nature

of the disturbance. When the reaction center, the core of the edge, moves to the left, the reaction

rate is augmented at points on the left,, diminished at points on the right, as here. Note that the

perturbation is confined to the edge, and does not affect the trailing diffusion flame.

Figure 3(ii) shows variations in the growth rate _e(/_) with wa_-number k when D = 1.777 x

107. V ariationsof frequency with k are modest, and w edo not sho wthem. These results are

typical of those that w eha vefound when D is in the unstable range. Further details and 3D
DNS calculations that we have carried out will be reported elsewhere, but v_ note that the growth

rate is a maximum when k = 0 and, consistent with this, the 3D DNS calculations show that 3D

disturbances are suppressed in favor of 2D disturbances.
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Figure 3: (i) Perturbation reaction-rate comours: the left, group are positive, values 10 50 150 300

450 600 750; the righ tgroup are negative, values -10-50 -150 -250 -300; (ii) V ariation_f growth
rate with wa_-nmnber, D = 1.777 x 107.

CONCLUDING REMARKS

In this study we have gained further insiglt into tile nature of oscillating edge-flame solutions. But

of greater interest, perhaps, is the demonstration that unsteady DNS can be used to construct

unstable steady solutions and to solv ethe corresponding linear stability problem. The numerical

examination of stability problems is commonplace in the fluid mechanics literature, but rare in the

combustion literature, and perhaps the results presented here will encourage others to pursue this
strategy in a variet y of applications.
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